An International Open Access Journal
News Scroll
E-mail Alerts
Subscribe for TOC Alerts
Search Articles
sidebar
Creative Commons License

References


Ahmad T, Haroon, Dhama K, Sharun K, Khan FM, Ahmed I, Tiwari R, Musa TH, Khan M, Bonilla-Aldana DK, J Rodriguez-Morales A, Hui J (2020) Biosafety and biosecurity approaches to restrain/contain and counter SARS-CoV-2/COVID-19 pandemic: a rapid-review. Turkish Journal of Biology 44(3):132-145. doi: 10.3906/biy-2005-63.

Alexpandi R, De Mesquita JF, Pandian SK, Ravi AV (2020) Quinolines-Based SARS-CoV-2 3CLpro and RdRp Inhibitors and Spike-RBD-ACE2 Inhibitor for Drug-Repurposing Against COVID-19: An in silico Analysis. Frontiers in Microbiology 11:1796.

Alhenc-Gelas F, Drueke TB (2020) Blockade of SARS-CoV-2 infection by recombinant soluble ACE2. Kidney International 97(6):1091-1093. 

Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, Makhene M, Chappell JD, Denison MR, Stevens LJ, Pruijssers AJ, McDermott AB, Flach B, Lin BC, Doria-Rose NA, O'Dell S, Schmidt SD, Corbett KS, Swanson PA 2nd, Padilla M, Neuzil KM, Bennett H, Leav B, Makowski M, Albert J, Cross K, Edara VV, Floyd K, Suthar MS, Martinez DR, Baric R, Buchanan W, Luke CJ, Phadke VK, Rostad CA, Ledgerwood JE, Graham BS, Beigel JH; mRNA-1273 Study Group (2020) Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. New England Journal of Medicine. DOI: 10.1056/NEJMoa2028436.

Bangaru S, Ozorowski G, Turner HL, Antanasijevic A, Huang D, Wang X, Torres JL, Diedrich JK, Tian JH, Portnoff AD, Patel N, Massare MJ, Yates JR, Nemazee D, Paulson JC, Glenn G, Smith G, Ward AB (2020) Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate. bioRxiv : the preprint server for biology 2020.08.06.234674. 

Barh D, Tiwari S, Silva Andrade B, Giovanetti M, Almeida Costa E, Kumavath R, Ghosh P, Góes-Neto A, Carlos Junior Alcantara L, Azevedo V (2020) Potential chimeric peptides to block the SARS-CoV-2 spike receptor-binding domain.  F1000Research 9:576.

Barile E, Baggio C, Gambini L, Shiryaev SA, Strongin AY, Pellecchia M (2020) Potential Therapeutic Targeting of Coronavirus Spike Glycoprotein Priming. Molecules 25(10):2424. 

Bar-Zeev N, Inglesby T (2020) COVID-19 vaccines: early success and remaining challenges. Lancet 396(10255):868-869.

Bar-Zeev N, Moss WJ (2020) Encouraging results from phase 1/2 COVID-19 vaccine trials. Lancet 396(10249):448-449. 

Belouzard S, Millet JK, Licitra BN, Whittaker GR (2012) Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 4(6):1011-33.

Berry JD, Hay K, Rini JM, Yu M, Wang L, Plummer FA, Corbett CR, Andonov A (2010) Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology. MAbs 2(1):53-66.

Bestle D, Heindl MR, Limburg H, Van Lam van T, Pilgram O, Moulton H, Stein DA, Hardes K, Eickmann M, Dolnik O, Rohde C, Klenk HD, Garten W, Steinmetzer T, Böttcher-Friebertshäuser E (2020) TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Science Alliance 3(9):e202000786.

Bilal M, Khan MI, Nazir MS, Ahmed I, Iqbal H (2020) Coronaviruses and COVID-19–Complications and Lessons Learned for the Future. Journal of Pure and Applied Microbiology 14(suppl 1):725-731 .

Bittmann S, Weissenstein A, Villalon G, Moschuring-Alieva E, Luchter E (2020) Simultaneous Treatment of COVID-19 With Serine Protease Inhibitor Camostat and/or Cathepsin L Inhibitor? Journal of Clinical Medicine Research 12(5):320-322.

Bosch BJ, van der Zee R, de Haan CA, Rottier PJ (2003) The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. Journal of Virology 77(16):8801-11.

Braun E, Sauter D (2019) Furin-mediated protein processing in infectious diseases and cancer. Clinical and Translational Immunology 8(8):e1073.

Cai Y, Zhang J, Xiao T, Peng H, Sterling SM, Walsh RM Jr, Rawson S, Rits-Volloch S, Chen B (2020) Distinct conformational states of SARS-CoV-2 spike protein. Science 369(6511):1586-1592. 

Cannalire R, Stefanelli I, Cerchia C, Beccari AR, Pelliccia S, Summa V (2020) SARS-CoV-2 Entry Inhibitors: Small Molecules and Peptides Targeting Virus or Host Cells. International Journal of Molecular Sciences 21(16), E5707

Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, Xing F, Liu J, Yip CC, Poon RW, Tsoi HW, Lo SK, Chan KH, Poon VK, Chan WM, Ip JD, Cai JP, Cheng VC, Chen H, Hui CK, Yuen KY (2020) A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 395, 514–523.

Chen X, Li R, Pan Z, Qian C, Yang Y, You R, Zhao J, Liu P, Gao L, Li Z, Huang Q, Xu L, Tang J, Tian Q, Yao W, Hu L, Yan X, Zhou X, Wu Y, Deng K, Zhang Z, Qian Z, Chen Y, Ye L (2020) Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor. Cellular & Molecular Immunology 17(6), 647–649.

Cheng YW, Chao TL, Li CL, Chiu MF, Kao HC, Wang SH, Pang YH, Lin CH, Tsai YM, Lee WH, Tao MH, Ho TC, Wu PY, Jang LT, Chen PJ, Chang SY, Yeh SH (2020) Furin Inhibitors Block SARS-CoV-2 Spike Protein Cleavage to Suppress Virus Production and Cytopathic Effects. Cell Reports 108254.

Chi X, Yan R, Zhang J, Zhang G, Zhang Y, Hao M, Zhang Z, Fan P, Dong Y, Yang Y, Chen Z, Guo Y, Zhang J, Li Y, Song X, Chen Y, Xia L, Fu L, Hou L, Xu J, Yu C, Li J, Zhou Q, Chen W (2020) A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science 369(6504):650-655.

Choi Y, Chang J (2013) Viral vectors for vaccine applications. Clinical and experimental vaccine research 2(2), 97–105.

Choudhary S, Malik YS, Tomar S (2020) Identification of SARS-CoV-2 Cell Entry Inhibitors by Drug Repurposing Using in silico Structure-Based Virtual Screening Approach. Frontiers in immunology 11, 1664.

Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, Flach B, O'Connell S, Bock KW, Minai M, Nagata BM, Andersen H, Martinez DR, Noe AT, Douek N, Donaldson MM, Nji NN, Alvarado GS, Edwards DK, Flebbe DR, Lamb E, Doria-Rose NA, Lin BC, Louder MK, O'Dell S, Schmidt SD, Phung E, Chang LA, Yap C, Todd JM, Pessaint L, Van Ry A, Browne S, Greenhouse J, Putman-Taylor T, Strasbaugh A, Campbell TA, Cook A, Dodson A, Steingrebe K, Shi W, Zhang Y, Abiona OM, Wang L, Pegu A, Yang ES, Leung K, Zhou T, Teng IT, Widge A, Gordon I, Novik L, Gillespie RA, Loomis RJ, Moliva JI, Stewart-Jones G, Himansu S, Kong WP, Nason MC, Morabito KM, Ruckwardt TJ, Ledgerwood JE, Gaudinski MR, Kwong PD, Mascola JR, Carfi A, Lewis MG, Baric RS, McDermott A, Moore IN, Sullivan NJ, Roederer M, Seder RA, Graham BS (2020) Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. New England Journal of Medicine: NEJMoa2024671. DOI: DOI: 10.1056/NEJMoa2024671.

Coughlin M, Lou G, Martinez O, Masterman SK, Olsen OA, Moksa AA, Farzan M, Babcook JS, Prabhakar BS (2007) Generation and characterization of human monoclonal neutralizing antibodies with distinct binding and sequence features against SARS coronavirus using XenoMouse. Virology 361(1): 93–102.

Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E (2020) The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral research 176: 104742.

Dahms SO, Jiao GS, Than ME (2017) Structural Studies Revealed Active Site Distortions of Human Furin by a Small Molecule Inhibitor. ACS Chemical Biology 12(5): 1211–1216.

Dai L, Zheng T, Xu K, Han Y, Xu L, Huang E, An Y, Cheng Y, Li S, Liu M, Yang M, Li Y, Cheng H, Yuan Y, Zhang W, Ke C, Wong G, Qi J, Qin C, Yan J, Gao GF (2020) A Universal Design of Betacoronavirus Vaccines against COVID-19, MERS, and SARS. Cell 182(3): 722–733.e11.

DeFrancesco L (2020) Whither COVID-19 vaccines? Nature Biotechnology 38(10):1132-1145.

Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, Singh KP, Chaicumpa W, Bonilla-Aldana DK, Rodriguez-Morales AJ (2020a) Coronavirus Disease 2019-COVID-19. Clinical Microbiology Reviews 33(4):e00028-20.

Dhama K, Patel SK, Sharun K, Pathak M, Tiwari R, Yatoo MI, Malik YS, Sah R, Rabaan AA, Panwar PK, Singh KP, Michalak I, Chaicumpa W, Martinez-Pulgarin DF, Bonilla-Aldana DK, Rodriguez-Morales AJ (2020b) SARS-CoV-2 jumping the species barrier: Zoonotic lessons from SARS, MERS and recent advances to combat this pandemic virus. Travel Medicine and Infectious Disease 37:101830.

Dhama K, Sharun K, Tiwari R, Dadar M, Malik YS, Singh KP, Chaicumpa W (2020c) COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Human Vaccines and Immunotherapeutics 16(6):1232-1238.

Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S (2009) The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nature reviews. Microbiology 7(3): 226–236.

Du L, Yang Y, Zhou Y, Lu L, Li F, Jiang S (2017) MERS-CoV spike protein: a key target for antivirals. Expert Opinion on Therapeutic Targets 21(2), 131–143.

Duan J, Yan X, Guo X, Cao W, Han W, Qi C, Feng J, Yang D, Gao G, Jin G (2005) A human SARS-CoV neutralizing antibody against epitope on S2 protein. Biochemical and Biophysical Research Communications 333(1): 186–193.

Elmezayen AD, Al-Obaidi A, ?ahin AT, Yelekçi K (2020) Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure and Dynamics 1-13. DOI: https://doi.org/10.1080/07391102.2020.1758791.

Elshabrawy HA, Coughlin MM, Baker SC, Prabhakar BS (2012) Human monoclonal antibodies against highly conserved HR1 and HR2 domains of the SARS-CoV spike protein are more broadly neutralizing. PloS one 7(11), e50366.

Faslu Rahman C, Sharun K, Jose B, Sivaprasad M, Jisna K (2020). Animal Models for SARS-CoV-2 Infection: A Tool for Vaccine and Therapeutic Research. Trends in Biomaterials & Artificial Organs 34(S3): 78-82.

Foged C (2011) Subunit vaccines of the future: the need for safe, customized and optimized particulate delivery systems. Therapeutic Delivery 2(8): 1057–1077.

Frediansyah A, Tiwari R, Sharun K, Dhama K, Harapan H (2020) Antivirals for COVID-19: A critical review. Clinical Epidemiology and Global Health, DOI: https://doi.org/10.1016/j.cegh.2020.07.006.

Fuller DH, Berglund P (2020) Amplifying RNA Vaccine Development. New England Journal of Medicine, 382(25):2469-2471.

Gao J, Lu G, Qi J, Li Y, Wu Y, Deng Y, Geng H, Li H, Wang Q, Xiao H, Tan W, Yan J, Gao GF (2013) Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus. Journal of virology 87(24): 13134–13140.

Greenough TC, Babcock GJ, Roberts A, Hernandez HJ, Thomas WD Jr, Coccia JA, Graziano RF, Srinivasan M, Lowy I, Finberg RW, Subbarao K, Vogel L, Somasundaran M, Luzuriaga K, Sullivan JL, Ambrosino DM (2005) Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice. The Journal of infectious diseases 191(4): 507–514.

Han DP, Penn-Nicholson A, Cho MW (2006) Identification of critical determinants on ACE2 for SARS-CoV entry and development of a potent entry inhibitor. Virology 350(1): 15–25.

Han Y, Král P (2020) Computational Design of ACE2-Based Peptide Inhibitors of SARS-CoV-2. ACS nano 14(4): 5143–5147.

Hanson QM, Wilson KM, Shen M, Itkin Z, Eastman RT, Shinn P, Hall MD (2020) Targeting ACE2-RBD interaction as a platform for COVID19 therapeutics: Development and drug repurposing screen of an AlphaLISA proximity assay. bioRxiv : the preprint server for biology 2020.06.16.154708.

Hasan A, Paray BA, Hussain A, Qadir FA, Attar F, Aziz FM, Sharifi M, Derakhshankhah H, Rasti B, Mehrabi M, Shahpasand K, Saboury AA, Falahati M (2020) A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. Journal of Biomolecular Structure & Dynamics, DOI: 10.1080/07391102.2020.1754293.

He C, Qin M, Sun X (2020) Highly pathogenic coronaviruses: thrusting vaccine development in the spotlight. Acta pharmaceutica Sinica B 10(7): 1175–1191.

He Y, Li J, Li W, Lustigman S, Farzan M, Jiang S (2006) Cross-neutralization of human and palm civet severe acute respiratory syndrome coronaviruses by antibodies targeting the receptor-binding domain of spike protein. Journal of immunology 176(10): 6085–6092.

Heaton PM (2020) The Covid-19 Vaccine-Development Multiverse. New England Journal of  Medicine, NEJMe2025111.

Ho TY, Wu SL, Chen JC, Wei YC, Cheng SE, Chang YH, Liu HJ, Hsiang CY (2006) Design and biological activities of novel inhibitory peptides for SARS-CoV spike protein and angiotensin-converting enzyme 2 interaction. Antiviral research 69(2): 70–76.

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S (2020a) SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181(2): 271–280.e8.

Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C, Pöhlmann S (2020b) Nafamostat Mesylate Blocks Activation of SARS-CoV-2: New Treatment Option for COVID-19. Antimicrobial agents and chemotherapy 64(6): e00754-20.

https://www.worldometers.info/coronavirus/. Accessed on 13th October, 2020.

Hu H, Li L, Kao RY, Kou B, Wang Z, Zhang L, Zhang H, Hao Z, Tsui WH, Ni A, Cui L, Fan B, Guo F, Rao S, Jiang C, Li Q, Sun M, He W, Liu G (2005) Screening and identification of linear B-cell epitopes and entry-blocking peptide of severe acute respiratory syndrome (SARS)-associated coronavirus using synthetic overlapping peptide library. Journal of Combinatorial Chemistry 7(5): 648–656.

Huang X, Pearce R, Zhang Y (2020a) Computational design of peptides to block binding of the SARS-CoV-2 spike protein to human ACE2. bioRxiv : the preprint server for biology 2020.03.28.013607.

 Huang Y, Yang C, Xu XF, Xu W, Liu SW (2020b) Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta pharmacologica Sinica 41(9): 1141–1149.

Hulswit RJ, de Haan CA, Bosch BJ (2016) Coronavirus Spike Protein and Tropism Changes. Advances in Virus Research 96, 29–57.

Hussain N, Ahmed A, Khan MI, Zhu W, Nadeem Z, Bilal M (2020) A real-time updated portrayal of covid-19 diagnosis and therapeutic options. Journal of Experimental Biology and Agricultural Sciences, 8(Spl-1- SARS-CoV-2): S21-S33. DOI: http://dx.doi.org/10.18006/2020.8(Spl 1- SARS-CoV-2).S21.S33.

Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, McCullough MP, Chappell JD, Denison MR, Stevens LJ, Pruijssers AJ, McDermott A, Flach B, Doria-Rose NA, Corbett KS, Morabito KM, O'Dell S, Schmidt SD, Swanson PA 2nd, Padilla M, Mascola JR, Neuzil KM, Bennett H, Sun W, Peters E, Makowski M, Albert J, Cross K, Buchanan W, Pikaart-Tautges R, Ledgerwood JE, Graham BS, Beigel JH; mRNA-1273 Study Group (2020) An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. New England Journal of Medicine :NEJMoa2022483.

Jaimes JA, André NM, Chappie JS, Millet JK, Whittaker GR (2020a) Phylogenetic Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop. Journal of Molecular Biology 432(10): 3309–3325.

Jaimes JA, Millet JK, Whittaker GR (2020b) Proteolytic Cleavage of the SARS-CoV-2 Spike Protein and the Role of the Novel S1/S2 Site. iScience 23(6): 101212.

Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z (2020) Immunological considerations for COVID-19 vaccine strategies. Nature Reviews. Immunology 20(10):615-632.

Ju B, Zhang Q, Ge J, Wang R, Sun J, Ge X, Yu J, Shan S, Zhou B, Song S, Tang X, Yu J, Lan J, Yuan J, Wang H, Zhao J, Zhang S, Wang Y, Shi X, Liu L, Zhao J, Wang X, Zhang Z, Zhang L (2020) Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 584(7819):115-119.

Katsiki N, Banach M, Mikhailidis DP (2020) Lipid-lowering therapy and renin-angiotensin-aldosterone system inhibitors in the era of the COVID-19 pandemic. Archives of medical science :AMS 16(3): 485–489.

Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, Plested JS, Zhu M, Cloney-Clark S, Zhou H, Smith G, Patel N, Frieman MB, Haupt RE, Logue J, McGrath M, Weston S, Piedra PA, Desai C, Callahan K, Lewis M, Price-Abbott P, Formica N, Shinde V, Fries L, Lickliter JD, Griffin P, Wilkinson B, Glenn GM (2020) Phase 1-2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine. New England Journal of Medicine  NEJMoa2026920.

Keng CT, Zhang A, Shen S, Lip KM, Fielding BC, Tan TH, Chou CF, Loh CB, Wang S, Fu J, Yang X, Lim SG, Hong W, Tan YJ (2005) Amino acids 1055 to 1192 in the S2 region of severe acute respiratory syndrome coronavirus S protein induce neutralizing antibodies: implications for the development of vaccines and antiviral agents. Journal of virology 79(6): 3289–3296.

Khailany RA, Safdar M, Ozaslan M (2020) Genomic characterization of a novel SARS-CoV-2. Gene reports 19:100682.

Kim D, Lee JY, Yang JS, Kim JW, Kim VN, Chang H (2020) Architecture of SARS-CoV-2 Transcriptome. Cell 181(4): 914–921.e10.

Lee N, McGeer A (2020) The starting line for COVID-19 vaccine development. Lancet 395(10240):1815-1816.

Li J, Ulitzky L, Silberstein E, Taylor DR, Viscidi R (2013) Immunogenicity and protection efficacy of monomeric and trimeric recombinant SARS coronavirus spike protein subunit vaccine candidates. Viral immunology 26(2): 126–132.

Li L, Petrovsky N (2016) Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert review of vaccines 15(3): 313–329.

Lip KM, Shen S, Yang X, Keng CT, Zhang A, Oh HL, Li ZH, Hwang LA, Chou CF, Fielding BC, Tan TH, Mayrhofer J, Falkner FG, Fu J, Lim SG, Hong W, Tan YJ (2006) Monoclonal antibodies targeting the HR2 domain and the region immediately upstream of the HR2 of the S protein neutralize in vitro infection of severe acute respiratory syndrome coronavirus. Journal of Virology 80(2): 941-50.

Liu S, Xiao G, Chen Y, He Y, Niu J, Escalante CR, Xiong H, Farmar J, Debnath AK, Tien P, Jiang S (2004) Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet (London, England) 363(9413): 938–947.

Liu T, Luo S, Libby P, Shi GP (2020) Cathepsin L-selective inhibitors: A potentially promising treatment for COVID-19 patients. Pharmacology & Therapeutics 213: 107587.

Lu L, Liu Q, Zhu Y, Chan KH, Qin L, Li Y, Wang Q, Chan JF, Du L, Yu F, Ma C, Ye S, Yuen KY, Zhang R, Jiang S (2014) Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nature communications 5: 3067.

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet (London, England) 395(10224), 565–574.

Lurie N, Saville M, Hatchett R, Halton J (2020) Developing Covid-19 Vaccines at Pandemic Speed. New England Journal of  Medicine 382(21):1969-1973. 

Malik YS, Sircar S, Bhat S, Sharun K, Dhama K, Dadar M, Tiwari R, Chaicumpa W (2020) Emerging novel coronavirus (2019-nCoV)-current scenario, evolutionary perspective based on genome analysis and recent developments. Veterinary Quarterly 40(1):68-76.

Masters PS (2006) The Molecular Biology of Coronaviruses. Advances in Virus Research 66:193–292.

Musarrat F, Chouljenko V, Dahal A, Nabi R, Chouljenko T, Jois SD, Kousoulas KG (2020) The anti-HIV drug nelfinavir mesylate (Viracept) is a potent inhibitor of cell fusion caused by the SARSCoV-2 spike (S) glycoprotein warranting further evaluation as an antiviral against COVID-19 infections. Journal of medical virology 6: 10.1002.

Ng OW, Keng CT, Leung CS, Peiris JS, Poon LL, Tan YJ (2014) Substitution at aspartic acid 1128 in the SARS coronavirus spike glycoprotein mediates escape from a S2 domain-targeting neutralizing monoclonal antibody. PLoS One 9(7):e102415.

Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z, Mu Z, Chen X, Chen J, Hu K, Jin Q, Wang J, Qian Z (2020) Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature communications 11(1): 1620.

Pandey SC, Pande V, Sati D, Upreti S, Samant M (2020) Vaccination strategies to combat novel corona virus SARS-CoV-2. Life sciences 256: 117956.

Pang X, Cui Y, Zhu Y (2020) Recombinant human ACE2: potential therapeutics of SARS-CoV-2 infection and its complication. Acta Pharmacologica Sinica 41(9): 1255–1257.

Pardi N, Hogan MJ, Porter FW, Weissman D (2018) mRNA vaccines - a new era in vaccinology. Nature reviews. Drug discovery 17(4): 261–279.

Patel SK, Pathak M, Tiwari R, Yatoo MI, Malik YS, Sah R, Rabaan AA, Sharun K, Dhama K, Bonilla-Aldana DK, Rodriguez-Morales AJ (2020) A vaccine is not too far for COVID-19. Journal of Infection in Developing Countries 14(5):450-453.

Peiró C, Moncada S (2020) Substituting Angiotensin-(1-7) to Prevent Lung Damage in SARS-CoV-2 Infection?. Circulation 141(21): 1665–1666.

Pinto D, Park YJ, Beltramello M, Walls AC, Tortorici MA, Bianchi S, Jaconi S, Culap K, Zatta F, De Marco A, Peter A, Guarino B, Spreafico R, Cameroni E, Case JB, Chen RE, Havenar-Daughton C, Snell G, Telenti A, Virgin HW, Lanzavecchia A, Diamond MS, Fink K, Veesler D, Corti D (2020) Structural and functional analysis of a potent sarbecovirus neutralizing antibody. bioRxiv: the preprint server for biology 2020.04.07.023903.

Poduri R, Joshi G, Jagadeesh G (2020) Drugs targeting various stages of the SARS-CoV-2 life cycle: Exploring promising drugs for the treatment of Covid-19. Cellular Signaling 74: 109721.

Ragia G, Manolopoulos VG (2020) Inhibition of SARS-CoV-2 entry through the ACE2/TMPRSS2 pathway: a promising approach for uncovering early COVID-19 drug therapies. European Journal of Clinical Pharmacology 1–8. doi: 10.1007/s00228-020-02963-4.

Rockx B, Corti D, Donaldson E, Sheahan T, Stadler K, Lanzavecchia A, Baric R (2008) Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge. Journal of virology 82(7): 3220–3235.

Rodriguez-Morales AJ, Bonilla-Aldana DK, Tiwari R, Sah R, Rabaan AA, Dhama K (2020b). COVID-19, an emerging coronavirus infection: current scenario and recent developments – An overview. Journal of Pure and Applied Microbiology 14(1): 05-12. https://doi.org/10.22207/JPAM.14.1.02

Rodriguez-Morales AJ, Dhama K, Sharun K, Tiwari R, Bonilla-Aldana DK (2020a) Susceptibility of felids to coronaviruses. Veterinary Record 186(17):e21.

Romeo A, Iacovelli F, Falconi M (2020) Targeting the SARS-CoV-2 spike glycoprotein prefusion conformation: virtual screening and molecular dynamics simulations applied to the identification of potential fusion inhibitors. Virus Research 286: 198068. DOI: 10.1016/j.virusres.2020.198068

Roshanravan N, Ghaffari S, Hedayati M (2020) Angiotensin converting enzyme-2 as therapeutic target in COVID-19. Diabetes & Metabolic Syndrome 14(4): 637–639.

Rubin EJ, Baden LR, Morrissey S, (2020) Audio Interview: Covid-19 Vaccine Development. New England Journal of Medicine 383(3): e40.

Samrat SK, Tharappel AM, Li Z, Li H (2020) Prospect of SARS-CoV-2 spike protein: Potential role in vaccine and therapeutic development. Virus research 288:198141. DOI: https://doi.org/10.1016/j.virusres.2020.198141.

Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB (2020) Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA 323(18):1824-1836.

Shah STA, Iftikhar A, Khan MI, Mansoor M, Mirza AF, Bilal M (2020) Predicting covid-19 infections prevalence using linear regression tool. Journal of Experimental Biology and Agricultural Sciences 8(Spl-1- SARS-CoV-2) page S01 – S08. DOI: http://dx.doi.org/10.18006/2020.8(Spl 1- SARS-CoV-2).S01.S08.

Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F (2020a) Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America 117(21): 11727–11734.

Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A, Li F (2020b) Structural basis of receptor recognition by SARS-CoV-2. Nature 581(7807): 221–224.

Sharun K, Dhama K, Patel SK, Pathak M, Tiwari R, Singh BR, Sah R, Bonilla-Aldana DK, Rodriguez-Morales AJ, Leblebicioglu H (2020c) Ivermectin, a new candidate therapeutic against SARS-CoV-2/COVID-19. Annals of Clinical Microbiology and Antimicrobials 19(1):23.

Sharun K, Sircar S, Malik YS, Singh RK, Dhama K (2020a) How close is SARS-CoV-2 to canine and feline coronaviruses? Journal of Small Animal Practice 61(8):523-526.

Sharun K, Tiwari R, Dhama J, Dhama K (2020d) Dexamethasone to combat cytokine storm in COVID-19: Clinical trials and preliminary evidence. International Journal of Surgery 82:179-181. 

Sharun K, Tiwari R, Iqbal Yatoo M, Patel SK, Natesan S, Dhama J, Malik YS, Harapan H, Singh RK, Dhama K (2020e) Antibody-based immunotherapeutics and use of convalescent plasma to counter COVID-19: advances and prospects. Expert Opinion on Biological Therapy 20(9):1033-1046. 

Sharun K, Tiwari R, Patel SK, Karthik K, Iqbal Yatoo M, Malik YS, Singh KP, Panwar PK, Harapan H, Singh RK, Dhama K (2020b) Coronavirus disease 2019 (COVID-19) in domestic animals and wildlife: advances and prospects in the development of animal models for vaccine and therapeutic research. Human Vaccines and Immunotherapeutics 1-12.

Shin MD, Shukla S, Chung YH, Beiss V, Chan SK, Ortega-Rivera OA, Wirth DM, Chen A, Sack M, Pokorski JK, Steinmetz NF (2020) COVID-19 vaccine development and a potential nanomaterial path forward. Nature Nanotechnology. 2020 Aug;15(8):646-655.

Sivaprasad M, Jisna K, Sharun K, Faslu Rahman C, Faslu Rahman A (2020) Laboratory Diagnosis of COVID-19: Safety and Preventive Measures for Sample Processing. Trends in Biomaterials & Artificial Organs 34(S3): 66-69.

Sternberg A, McKee DL, Naujokat C (2020) Novel Drugs Targeting the SARS-CoV-2/COVID-19 Machinery. Current topics in Medicinal Chemistry 20(16): 1423–1433.

Struck AW, Axmann M, Pfefferle S, Drosten C, Meyer B (2012) A hexapeptide of the receptor-binding domain of SARS corona virus spike protein blocks viral entry into host cells via the human receptor ACE2. Antiviral research 94(3): 288–296.

Sui J, Li W, Murakami A, Tamin A, Matthews LJ, Wong SK, Moore MJ, Tallarico AS, Olurinde M, Choe H, Anderson LJ, Bellini WJ, Farzan M, Marasco WA (2004) Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proceedings of the National Academy of Sciences of the United States of America 101(8): 2536-41.

Talreja H, Tan J, Dawes M, Supershad S, Rabindranath K, Fisher J, Valappil S, van der Merwe V, Wong L, van der Merwe W, Paton J (2020) A consensus statement on the use of angiotensin receptor blockers and angiotensin converting enzyme inhibitors in relation to COVID-19 (corona virus disease 2019). The New Zealand medical journal 133(1512): 85–87.

Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S (2020) Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Research 178, 104792.

Tetro JA (2020) Is COVID-19 receiving ADE from other coronaviruses?. Microbes and Infection 22(2): 72–73.

The Lancet (2020) Global governance for COVID-19 vaccines. Lancet 395(10241):1883.

Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, Jiang S, Yang Z, Wu Y, Ying T (2020) Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerging Microbes & Infections 9(1): 382–385.

Tiwari R, Dhama K, Sharun K, Iqbal Yatoo M, Malik YS, Singh R, Michalak I, Sah R, Bonilla-Aldana DK, Rodriguez-Morales AJ (2020) COVID-19: animals, veterinary and zoonotic links. Veterinary Quarterly 40(1):169-182. 

Trezza A, Iovinelli D, Santucci A, Prischi F, Spiga O (2020) An integrated drug repurposing strategy for the rapid identification of potential SARS-CoV-2 viral inhibitors. Scientific Reports 10(1): 13866.

Tseng CT, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar RL, Peters CJ, Couch RB (2012) Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PloS one 7(4): e35421.

Ujike M, Nishikawa H, Otaka A, Yamamoto N, Yamamoto N, Matsuoka M, Kodama E, Fujii N, Taguchi F (2008) Heptad repeat-derived peptides block protease-mediated direct entry from the cell surface of severe acute respiratory syndrome coronavirus but not entry via the endosomal pathway. Journal of virology 82(1): 588-92.

Ulrich H, Pillat MM, Tárnok A (2020) Dengue Fever, COVID-19 (SARS-CoV-2), and Antibody-Dependent Enhancement (ADE): A Perspective. Cytometry, Part A : the journal of the International Society for Analytical Cytology 97(7): 662–667.

VanPatten S, He M, Altiti A, F Cheng K, Ghanem MH, Al-Abed Y (2020) Evidence supporting the use of peptides and peptidomimetics as potential SARS-CoV-2 (COVID-19) therapeutics. Future medicinal chemistry DOI: 10.4155/fmc-2020-0180. Advance online publication.

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D (2020) Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181(2): 281–292.e6.

Editorial Board
Indexed & Listed In
Scimago Journal Rank
Track manuscript
Manuscript Statistics
Articles Statistics
Publication Statistics