ANTIMICROBIAL ACTIVITY OF ARGENTINEAN PROPOLIS AGAINST Staphylococcus ISOLATED OF CANINE OTITIS

Salas A L¹, Ordoñez R M¹,²,³, Silva C³, Maldonado L⁴, Bedascarrasbure E⁴, Isla M I¹,²,³,* and Zampini I C¹,²,³,*

¹INQUINOA (CONICET), Universidad Nacional de Tucumán. Ayacucho 471, T4000INI- San Miguel de Tucumán. Tucumán. Argentina.
４Estación Experimental Agropecuaria Famaillá, Instituto Nacional de Tecnología Agropecuaria, Ruta provincial 301, km 32, Famaillá, Tucumán, Argentina.

Received – March 05, 2014; Revision – March 21, 2014, Accepted – April 29, 2014
Available Online - April 30, 2014

KEYWORDS
Argentinean propolis
Chemical composition
Antimicrobial activity
Canine otitis
Staphylococcus strains
Veterinary use

ABSTRACT

Increasing resistance toward the available antibiotics by various microbial diseases pushed veterinarian to think about alternative therapies. Propolis is a natural compound well known since ancient times for its therapeutic effects and has been employed in traditional veterinary medicine. The aim of this study was to analyze the chemical composition of 12 propolis ethanolic extracts (PEEs) from different provinces of Northern Argentina and evaluate their antimicrobial activity against Staphylococcus strains isolated from canine otitis. Thirteen compounds (eight flavonoids, two chalcones and three phenolic acids) were identified by TLC, spectrophotometric methods and HPLC-DAD. PEEs were effective against Staphylococcus strains. The highest antibacterial activities were found in samples from Tucumán province. All propolis samples were considered bacteriostatic and the selection of resistant phenotypes did not occur in presence of Argentinean-PEE. Results of the present study indicate that propolis extracts might be an effective alternative against canine otitis-causing S. aureus strains in vivo.

* Corresponding author (Both authors has the same participation)
E-mail: zampini@csnat.unt.edu.ar (Zampini I C)

Peer review under responsibility of Journal of Experimental Biology and Agricultural Sciences.
1 Introduction

Propolis is a resinous substance isolated from honeybee’s exudates and buds of trees and plants. These exudate are mixed with wax and some enzymes secreted by bees. Chemical composition of Propolis depends on the climatic conditions, collection time and phytogeographical characteristics of the collection site as in different ecosystems bees collect it from different plant sources, choosing appropriate representatives of the local flora (Isla et al., 2001; Park et al., 2002; Isla et al., 2005, Bankova et al., 2000; Bankova et al., 2006; Bankova et al., 2008; Kumazawa et al., 2008; Isla et al., 2009; Vera et al., 2011; Isla et al., 2012a; Isla et al., 2012b; Solórzano et al., 2012; Danert et al., 2014).

This natural product has been employed extensively since ancient times, and it’s continuously use till today as a popular remedy in traditional human medicine, as well as, in veterinary medicine. Use of propolis in veterinary medicine, and the effectiveness in preventing and treatment of different pathologies has been documented by various researchers (Albanese et al., 2002; Orsolic et al., 2005; Fan et al., 2013).

Bacterial resistance is associated with the excessive use of antimicrobial agents. In recent years, the bacterial resistance both, in animal as human, have drawn much attention by its impact on health (Guardabassi et al., 2004; Phillips et al., 2004; Aarestrup, 2005).

Canine otitis was included as the principal group of diseases in veterinary medicine and is highly prevalent; 21.7–42% of dogs have been reported to be infected (Oliveira et al., 2006; Ramalho et al., 2007). Canine otitis develops due to predisposing factors and the action of microorganisms that belong to the normal microbiota flora of the auricular area. These infections can exhibit a high level of antibiotic resistance (Lyskova et al., 2007; Pedersen et al., 2007) and thus requires alternative therapies such as the use of natural products. In this sense, Argentinean propolis extracts may be used as a natural antimicrobial for its treatment.

The aim of this study was to analyze the chemical composition of propolis extracts from different provinces of Northern Argentina and evaluate their in vitro antimicrobial activity against Staphylococcus strains isolated from canine otitis.

2 Materials and methods

2.1 Propolis samples

A total of 12 samples were collected from four provinces of Northern Argentina: Salta, Tucumán, Jujuy and Misiones. Five were from Salta i.e. Department Metán (SA-163-INTA), Department Anta (SA-350-INTA, SA-193-INTA, SA-349-INTA), and Department Cachi (SA-104-INTA). Five were from Tucumán i.e. Department Tafi del Valle (T-101-INTA, T-102-INTA), Department Trancas (T-103-INTA), Department Leales (T-206-INTA), and Department Famaillá (T-192-INTA). One was from Jujuy: Department Ledesma (Ju-100-INTA) and one from Misiones: Department Apóstoles (M-299-INTA).

2.2 Preparation of propolis ethanolic extracts (PEE)

2g of propolis were mixed with 25 mL of 80% ethanol (EtOH:H2O, 80:20, v/v) and maintaining with shaken at 70 °C for 30 min in termostatized shaker (Vicking). After extraction, the mixture was centrifuged at 3000 xg for 10 min, and the supernatants were used for further analysis (Isla et al., 2005).

2.3 Phytochemical screening

The extracts were standardized based on phenolic compounds and flavonoid content according to IRAM-INTA normative N°15935-2.

2.3.1 Determination of Phenolic compounds

The concentrations of phenolic compounds from the PEE were determined by using the Folin-Ciocalteu method (Singleton et al., 1999). The extract solution was mixed with 0.2 mL of the Folin-Ciocalteu reagent, and 0.8 mL of 15.9% sodium carbonate. Final volume was carried to 3 mL with distilled water. The mixture was heated at 50ºC for 5 min, then it kept for cooling at room temperature and absorption was measured at 765nm. Results were expressed as mg of gallic acid equivalents per mL (mgGAE/mL).

2.3.2 Flavone and flavonol content

Total flavone and flavonol content was estimated by spectrophotometric assay based on aluminum chloride complex formation (Popova et al., 2005). Results were expressed as mg of quercetin equivalents per mL (mgQE/mL).

2.3.3 Flavanone and dihydroflavonol content

Flavanone and dihydroflavonol content was determined by using DNP in acid media according to Popova et al. (2005) with modifications. DNP solution (0.5 mL of 1% DNP solution in methanol containing 2 mL 96% sulfuric acid) was added to 0.25 mL of different dilutions of extracts and heated at 50ºC for 50 min. After cooling, the mixture was diluted 3:33 fold with 10% KOH and centrifuged at 1500 xg during 10 min and the supernatant was diluted six fold with methanol. Absorbance was measured at 492 nm. Results were expressed as mg of naringenin equivalents per mL (mgNE/mL).

2.4 PEE absorption spectra

The PEE (25 µL) were mixed with 2 mL of 80% EtOH, and the mixtures were scanned at wavelengths between 200 and 450 nm with a UV-Vis Beckman DU 650 spectrophotometer.

Journal of Experimental Biology and Agricultural Sciences
http://www.jebas.org
2.5 Thin layer chromatography (TLC)

The different extracts (10 µg of total phenolic compounds) were spotted on to a silica gel TLC plate (Kieselgel 60 F254 0.2mm, Merck). The plates were developed in ascending direction with toluene: CHCl₃: acetonitrile (4:5:2.5:3.5, v/v/v/v) as mobile phase. TLC plates were revealed under UV light at 365 nm (UV Lamp Model GL-58 Mineralight Lamp) and Natural Products reagent (NP – 1% methanolic solution of diphenylboric acid aminoethyl esther) (Wagner et al., 1984).

2.6 High performance liquid chromatography (HPLC)

The HPLC system consisting of a Waters 1525 Binary HPLC Pumps system with a 1500 Series Column Heater, a manual injection valve with a 20 µL loop (Rheodyne Inc., Cotati, CA) and a Waters 2998 photodiode array detector (PAD) was used to analyze the extracts. An XBridgeTM C18 column (4.6 mm x 150 mm, 5 µm; Waters Corporation, Milford, MA) was used. Gradient elution was carried out with methanol (MeOH, solvent B) and H₂O -9% acetic acid (solvent A) (conditions: 25% B – 75% A from 0 to 10 min and kept at 45% B – 55% A from 10 to 20 min, 70% B – 30% A from 20 to 40 min, 75% B – 25% A from 40 to 50 min, 100% B from 50 to 55 min) were used to separate PEE components. Flow rate was set at 0.8 mL/min. Data collection was carried out with Empower TM 2 software. The presence of phenolic compounds in extracts was confirmed by UV spectrometry (220–500 nm) in comparison with standard compounds.

2.7 Antimicrobial assays

2.7.1 Microorganisms

The microorganisms used in this study were isolated from canine otitis. Five strains i. e. Staphylococcus haemolyticus (n=1) (Lipron-A1), S. aureus (n=2) (Lipron-A2 and A3), S. intermedius (n =1) (Lipron-A5) and S. aureus ATCC strain (ATCC 29213) were used in the study. The strains were identified by the use of biochemical profiles according to the recommendations of the Manual of Clinical Microbiology (Murray et al., 1999). All organisms were maintained in brain–heart infusion (BHI medium) containing 30% (v/v) glycerol at −20 ºC. Before testing, the suspensions were transferred to Mueller–Hinton agar (MHA) and aerobically grown overnight at 35 ºC.

2.7.2 Antimicrobial commercial susceptibility test

Antibiotic susceptibility was determined by the disk diffusion method using commercial disk (Oxoid, UK) containing the amount of antibiotic indicated by international normative; viz Erythromycin (15 µg), Clindamycin (2 µg), Teicoplanin (30 µg), Gentamicin (10 µg), Ciprofloxacin (5 µg), Oxacillin (1 µg), Rifampicin (5 µg), Sulphamethoxazole/Trimethoprim (23.75/1.25 µg) and Vancomycin (30 µg). Resistance was defined for each case according to the inhibition zone diameter according to CLSI, 2012a, CLSI, 2013: Erythromycin (≤ 13 mm), Clindamycin (≤ 14 mm), Teicoplanin (≤ 10 mm), Gentamicin (≤ 12 mm), Ciprofloxacin (≤ 15 mm), Oxacillin (≤ 10 mm), Rifampicin (≤ 16 mm), Sulphamethoxazole/Trimethoprim (≤ 10 mm) and Vancomycin (CIM ≥ 16 µg/mL).

2.7.3 Preparation of Inoculum

The inoculum were prepared by adjusting the turbidity of the suspension of each culture to 0.5 Mc Farland and by counting the number of colonies (10⁸ colony forming units (CFU)/mL).

2.7.4 Bioautographic assay

The different extracts (10 µg of total phenolic compounds) were spotted on to a silica gel TLC plate (Kieselgel 60 F254 0.2mm, Merck). The plates were developed in ascending direction with toluene: CHCl₃: acetonitrile (4:5:2.5:3.5, v/v/v/v) as mobile phase and air-dried. Plates were covered with 2 mL of soft medium (BHI with 0.6% agar) containing 10⁴ colony forming units (CFU). Then, the plates were aerobically incubated at 35 ºC for 16–20 h and sprayed with a 2.5 mg/mL MTT solution (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium) in PBS (10mM sodium phosphate buffer, pH 7, with 0.15M NaCl). The bands with antibacterial activity were identified as yellow zones against a blue background. These growth inhibition areas were compared with the RF values of the related spots on the TLC plate revealed with NP and UV light according the methodology described in 2.5 (Nieva Moreno et al., 1999).

2.7.5 Broth microdilution method

Dilutions of PEE ranging from 10 to 640 µg GAЕ/mL were prepared in sterile 96 well microplates. The wells were filled with 100 µL cation-adjusted (Ca²⁺ 8 mg/L and Mg²⁺ 5 mg/L) Mueller–Hinton broth. The final inoculum was 5×10⁸ CFU/mL (CLSI, 2012b, CLSI, 2013) adjusted.

The inoculated microplates were aerobically incubated at 35 ºC for 18 h. Bacterial growth was indicated by the presence of turbidity and a pellet on the well bottom. MICs were determined presumptively as the first well where no pellet appeared. Irreversible deletion of viability of the tested strains was confirmed by reinoculating Mueller Hinton agar plates with 10 µL of each culture medium from the microplates. MBC was determined after 18 h of incubation at 35 ºC. MBC was defined as the lowest extract concentration at which 99.9% of the bacteria had been killed.

In order to determine the antibacterial effect of the PEE, the values of the ratio MBC/MIC were determined. Bactericidal effect was considered when MBC/MIC was ≤ 2, bacteriostatic effect when MBC/MIC was ≥ 4 and < 32 and tolerance when MBC/MIC was ≥ 32 (Reynaldi et al., 2010).
2.7.6 Time–kill studies

The tubes containing Mueller–Hinton broth with and without PEE were seeded with a log phase inoculum of 10^6 CFU/mL (S. aureus and S. intermedius) to a final volume of 10 mL. Different PEE concentrations (T-101-INTA, T-192-INTA and SA-104-INTA) corresponding to MIC, 2xMIC and 4xMIC values were used. Inoculated broths were incubated at 35 ºC for 12 h. At 0, 4, 8 and 24 h intervals after inoculation, a portion (0.1mL) was removed from each tube and was subjected to fold serial dilution. Then, 0.01 mL of every dilution was spread in MH agar plates. A time–kill curve was constructed for each isolate by using the viable cell counts determined at each interval. Bactericidal activity was defined as a reduction of 99.9% (≥3 log10 CFU/mL) of the total count of CFU/mL in the original inoculum in 4 h (NCCLS, 1999).

2.7.7 Selection of propolis-resistant S. aureus cells

S. aureus strains were transferred every 24 h for approximately 60 generations into fresh MH broth media containing sub-lethal doses of PEE (T-206-INTA). The propolis T-206 was selected for this assay by its higher antibacterial activity than other propolis samples. The sub-lethal dose was defined as the concentration of ethanolic extract that reduced the bacterial growth rate in at least 50%, but only caused less than 20% decrease in the maximum OD_{max} of S. aureus cultures. A concentration of 2.5 µg/mL was used for isolate A3. After each transfer, the cultures were incubated at 35 ºC for 12 h. To verify the selection of resistant cells, the sensibility of each isolate to propolis was re-evaluated every 20 transfers by microdilution assays as described previously (Santana et al., 2012).

2.8 Statistical analysis

Results are mean values obtained from at least three independent experiments. Differences between values were analyzed by Tukey test using InfoStat software. Values with a common letter are not significantly different (p> 0.5).

3 Results and discussion

3.1 Phytochemical screening

Most PEE showed a high content of phenolic compounds, between 13.2 to 23.5 g/100 g of phenolic compounds were reported (Table 1). These values were similar to those reported for propolis from Brazil, China, Uruguay and other propolis from Argentina (Bonvelli et al., 1994; Nieva Moreno et al., 2000; Bedascarrasbure et al., 2004; Chaillou et al., 2004; Isla et al., 2009; Lima et al., 2009; Lozina et al., 2010a). Amongst various PEP extract, SA-163-INTA, M-299-INTA, T-103-INTA showed lowest phenolic compounds concentrations, these values were similar to reported by Chaillou et al. (2004) for propolis from Santiago del Estero (Argentina). T-206-INTA was the sample that showed the lowest phenolic compounds content (1.72 g/100g of propolis) with similar values to those reported by Lozina et al. (2010a) for propolis from Chaco (Argentina).

Regarding the quantification of flavones and flavonols content (Table 1), T-101-INTA (27.48 g/100g), T-102-INTA (18.27 g/100g) and SA-350-INTA (16.08 g/100g) propolis showed the highest concentration of both, while samples of M-299-INTA, T-206-INTA and Ju-100-INTA showed the lowest contents (0.13; 0.24; and 0.38 g/100g, respectively). The samples from T-101, T-102, SA-350, SA-349 and Ju-100 showed the highest values of flavanones and dihydroflavonols concentration (12.82; 9.57; 8.56; 8.62 and 10.46 g/100g, respectively) while SA-163, T-103 and M-299 samples showed the lowest values, and it was between 3.00 and 1.38 g/100g (Table 1), these findings shows similarly with the results of Isla et al. (2009) those who described same type of values for the propolis from San Juan. These results revealed that quantitative chemical composition of propolis depends on the phytogeographical region where the hives are located.

The absorption profiles of T-101, T-102, T-192, SA-350, SA-349 and SA-104 propolis samples were similar with wide bands between 230 and 315 nm, a small band at 330 nm and a peak at 360 nm. The absorption spectra of T-103, T-206, SA-163, SA-193, Ju-100 and M-299 propolis samples were different from each other. According with TLC and HPLC-DAD patterns the PEEs were classified in five different groups. Group I: T-101, group II: T-206, Group III: SA-193, Group IV: T-102, T-103, T-192, SA-163, SA-350, SA-349 and SA-104 and Group V: Ju-100 and M-299. HPLC-DAD analysis revealed a complex chemical composition (Figure. 1). Three phenolic acids viz chlorogenic acid (C1), p-coumaric acid (C2), ferulic acid (C3); eight flavonoids viz hesperidin (C4), naringenin (C5), kaempferol (C7), apigenin (C8), 7-hydroxylavavonone (C9), pinocembrin (C10), chrysin (C11), and two chalcones viz 2’,4’- dihydroxychalcone (C12), 2’,4’-dihydroxy 3-methoxychalcone (C13) were identified from the analyzed samples (Figure1). Presence of these compounds were also reported by various researcher from propolis samples (Kumazawa et al., 2004; Gardana et al., 2007; Zhou et al., 2008; Lima et al., 2009; Aguero et al., 2010; Isla et al., 2012b; Righi et al., 2013).

3.2 Antimicrobial activity

All canine otitis isolates were susceptible to oxacillin, (Table 2). Resistance to ciprofloxacin, teicoplanin and trimethoprim/sulphamethoxazole was also reported in study. The screening of antimicrobial activity by contact bioautography which was used for qualitative antibacterial activity detection, demonstrated that ethanolic extracts have antibacterial properties. T-101 showed two inhibition bands coincident with characteristic dark brown bands from chalcones by TLC/UV (Nieva Moreno et al., 2005; Zampini et al., 2005). The highest number of bands with antibacterial activity was observed in T-206 and SA-104 propolis. In T-206 and SA-104 samples, the bands with Rf<0.8 belong to flavonoids.
Figure 1 PEE HPLC profiles:

The identified compounds were:

1) Chlorogenic acid, 2) p-coumaric acid, 3) Ferulic acid, 4) Hesperidin, 5) Naringenin, 6) Hesperetin, 7) Kaempferol, 8) Apigenin, 9) 7-hydroxyflavanone, 10) Pinocembrin, 11) Chrysin, 12) 2', 4' dihydroxychalcone, 13) 2', 4'-dihydroxy 3- methoxychalcone
Table 1 Total phenolic compounds, flavones/flavonols and flavanones/dihydroflavonols content present in PEEs.

<table>
<thead>
<tr>
<th>Samples INTA</th>
<th>Phenolic compounds</th>
<th>Flavonoids and Flavonols</th>
<th>Flavanones and Dihydroflavonols</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mgGAE/ml)</td>
<td>(mg/g) *</td>
<td>(mgQE/ml)</td>
</tr>
<tr>
<td>T-101</td>
<td>18.86 ± 0.37</td>
<td>235.75 ± 4.64</td>
<td>23.57 ± 0.46 ^</td>
</tr>
<tr>
<td>T-102</td>
<td>16.83 ± 0.16</td>
<td>210.37 ± 2.00</td>
<td>21.03 ± 0.20 ^ ^</td>
</tr>
<tr>
<td>T-103</td>
<td>6.80 ± 0.21</td>
<td>85.00 ± 2.60</td>
<td>8.50 ± 0.27 ^ ^</td>
</tr>
<tr>
<td>T-206</td>
<td>1.38 ± 0.04</td>
<td>17.25 ± 0.54</td>
<td>1.72 ± 0.05 ^ ^</td>
</tr>
<tr>
<td>T-192</td>
<td>10.58 ± 0.74</td>
<td>132.25 ± 9.28</td>
<td>13.22 ± 0.93 ^ ^</td>
</tr>
<tr>
<td>SA-163</td>
<td>3.96 ± 0.10</td>
<td>49.50 ± 1.10</td>
<td>4.95 ± 0.11 ^ ^</td>
</tr>
<tr>
<td>SA-350</td>
<td>14.21 ± 0.50</td>
<td>177.62 ± 5.97</td>
<td>17.76 ± 0.60 ^ ^</td>
</tr>
<tr>
<td>SA-193</td>
<td>11.43 ± 0.43</td>
<td>142.87 ± 5.39</td>
<td>14.28 ± 0.54 ^ ^</td>
</tr>
<tr>
<td>SA-349</td>
<td>11.58 ± 0.38</td>
<td>144.75 ± 4.73</td>
<td>14.47 ± 0.47 ^ ^</td>
</tr>
<tr>
<td>SA-104</td>
<td>11.55 ± 0.28</td>
<td>144.37 ± 3.56</td>
<td>14.43 ± 0.36 ^ ^</td>
</tr>
<tr>
<td>Ju-100</td>
<td>14.28 ± 0.02</td>
<td>178.50 ± 0.22</td>
<td>17.85 ± 0.02 ^ ^</td>
</tr>
<tr>
<td>Mi-299</td>
<td>5.88 ± 1.17</td>
<td>73.50 ± 2.30</td>
<td>7.35 ± 1.46 ^ ^</td>
</tr>
</tbody>
</table>

* mg per g of propolis. Data are expressed as means ± standard deviations (n = 4)

Table 2 Minimum inhibitory concentration (MIC), minimum bacterial concentration (MBC) and relation MBC/MIC of PEE of four regions of Argentina.

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>T-101</th>
<th>T-102</th>
<th>T-103</th>
<th>T-206</th>
<th>T-192</th>
<th>SA-163</th>
<th>SA-350</th>
<th>SA-193</th>
<th>SA-349</th>
<th>SA-104</th>
<th>Ju-100</th>
<th>M-299</th>
<th>MIC, MBC (µGAE/mL), MBC/MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus (ATCC 29213)</td>
<td>20/320/16</td>
<td>10/640/64</td>
<td>80/640/8</td>
<td>40/640/16</td>
<td>20/160/8</td>
<td>10/640/64</td>
<td>10/640/64</td>
<td>10/640/64</td>
<td>10/640/64</td>
<td>10/160/16</td>
<td>nd</td>
<td>nd</td>
<td></td>
</tr>
</tbody>
</table>

Ery: Erythromycin (Ery) Clindamycin (Cl) Teicoplanin (T); Vancomycin (Van); Gentamicin (Gen); Ciprofloxacin (Cip); Oxacillin (Oxa); Rifampicin (Rfa); Sulphamethoxazole/trimethoprin (TMS); Sensitive (S); Resistant (R); nd: Not determined.
Figure 2 Killing curves corresponding to two strains of *Staphylococcus* against different concentrations of propolis extracts 80 (▲) and 160 (●) μg/mL in comparison with a growth control without antibiotic (■). A) PEE-T-101 against *S. aureus* Lipron-A2 B) PEE-T-101 against *S. aureus* Lipron-A5 C) PEE-T-192 against *S. aureus* Lipron-A5 D) PEE-SA-104 against *S. aureus* Lipron-A2 E) PEE-SA-104 against *S. aureus* Lipron-A5.
Table 2 summarizes the MIC and MBC values as well as the ratio MBC/MIC of the different propolis extracts against Gram positive bacteria (S. haemolyticus, S. aureus, S. intermedius). Tucumán propolis samples showed MIC values between 10-80 µg GAE/mL and MBC values between 80-640 µg GAE/mL (Table 2). T-206 and T-102 samples were more active (MIC values 10 and 20 µg GAE/mL, respectively). The compounds identified in the T-206 sample were p-coumaric acid, hesperetin, pinocembrin and chrysin. Presence of these compounds have been reported previously as antimicrobial agents (Koo et al., 2000; Koo et al., 2002; Kosalec et al., 2003; Mandalari et al., 2007). These flavonoids were also identified from the T-102 samples. The T-206 sample showed the lowest concentration of phenolic compounds content (Table 1) and the chromatographic analyses revealed few chemical compounds, but the PEE showed the highest antibacterial activity against Gram positive bacteria. These results are in agreement with those obtained from the bioautographic assays where the highest number of bioactive compounds was shown. This shows that the quantity of total phenolic compounds or flavonoids is not the only important factor; the quality of the chemical compounds present in each PEE should also be taken in consideration.

Among the extracts of propolis collected in Salta, SA-104 and SA-350 samples demonstrated the highest bacterial growth inhibition against all the analyzed strains, with MIC values of 10-40 µg GAE/mL, MBC values between 80-160 µg GAE/mL for SA-104 and 320-640 µg GAE/mL for SA-350 (Table 2). These results were also confirmed by those observed in the bioautography test as SA-104 tincture was one of the highest in bioactive components. The compounds identified in this propolis sample were flavonoids such as hesperidin, pinocembrin, naringenin, and chrysin, well known for their antimicrobial action (Rauha et al., 2000; Koo et al., 2000; 2002; Kosalec et al., 2003; Yi et al., 2008). The samples from Jujuy and Misiones showed the least antimicrobial activity (Tabla 2). Previous in vitro studies have reported the potential antibacterial activity of propolis from several regions of Argentina against human pathogens and phytopathogens (Nieva Moreno et al., 1999; Isla et al., 2005; Ordoñez et al., 2011; Vera et al., 2011; Isla et al., 2012a; Solórzano et al., 2012). Lozina et al., (2010b) reported an antimicrobial activity against canine otitis strains of propolis of Mendoza in Argentina, but this is the first report of propolis from Northern Argentina against Gram positive bacteria isolated from canine otitis. Cardoso et al., (2010) evaluated the effect of propolis from Brazil against Staphylococcus coagulase positive (S. aureus and S. intermedius) isolated from dogs with external otitis, finding MBC values between 13.3 – 16.0 mg/mL which were higher than those presented in this study for the propolis from Northern Argentina.

Bactericidal effect was acknowledged when MBC/MIC was ≤ 2, bacteriostatic effect when MBC/MIC was ≥ 4 and < 32 and tolerance when MBC/MIC was ≥ 32. None propolis extract showed bactericidal effects on all analyzed canine pathogenic strains (Tabla 2). Kill-time assays were performed with PEE to confirm the bacteriostatic/bactericidal effect (Figure 2).

In the literature there were reports of resistance of S. aureus strains to diverse antibiotics (Zoraghi et al., 2010). Santana et al. (2012) reports that the selection of the resistance phenotype in brazilian propolis did not occur. We assayed the resistance of S. aureus strains to argentine propolis, and neither develop some resistance, as would be expected if resistant cells were present as a subpopulation in the Staphylococcus culture, this could be due to the complex composition of propolis, and each chemical constituents present different mechanisms of action and synergistic interactions (Salomao et al., 2008).

Conclusion

The antibacterial activity exerted by the propolis of Northern Argentina propolis extracts (mainly those from de Salta and Tucumán province) against S. haemolyticus, S. intermedius and S. aureus, common canine pathogenic strains, suggest their potential application as a natural antimicrobial in the treatment of canine otitis.

Acknowledgements

The authors thank the inhabitants of the areas of study for their cooperation and acknowledge the financial support from Consejo de Investigación de la Universidad Nacional de Tucumán (CIUNT 26 D-430), Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET PIP-704), Argentina and INTA (Instituto Nacional de Tecnologia Agropecuaria)

References

ethnomedicine. Transworld Research Network. Trivandrum, India.

Evidence-Based Complementary and Alternative Medicine 5: 317-324.

